INSTITUTO DE CIENCIA DE MATERIALES DE SEVILLA

(Consejo Superior de Investigaciones Científicas – Universidad de Sevilla)

icms-conferences

2025

Abstract

Lanthanide-doped upconversion nanoparticles (UCNPs), as multifunctional light sources, are finding utility in diverse applications ranging from biotechnology to light harvesting. However, the main challenge in realizing their full potential lies in achieving bright and efficient photon upconversion (UC). In this study, we present a novel approach to fabricate an array of gold nanoantennas arranged in a hexagonal lattice using a simple and inexpensive colloidal lithography technique, and demonstrate a significant enhancement of UC photoluminescence (UCPL) by up to 35-fold through plasmon-enhanced photoexcitation and emission. To elucidate the underlying physical mechanisms responsible for the observed UCPL enhancement, we provide a comprehensive theoretical and experimental characterization, including a detailed photophysical description and numerical simulations of the spatial electric field distribution. Our results shed light on the fundamental principles governing the enhanced UCNPs and pave the way for their potential applications in photonic devices.

Abstract

In this study, efficient electrodes for the hydrogen evolution reaction (HER) based on low-cost and metal-free carbon catalysts are presented. Phytic acid, a biosourced molecule containing carbon (C) and phosphorus (P), was found to be an excellent precursor for producing carbon materials with high P content, depending on the carbonization temperature, from 27.9 wt% at 700 °C to 7.3 wt% at 1000 °C. A green and easy route to produce P-doped carbon materials by heat treatment of this biosourced precursor without the need for additional reagents is thus proposed. We show that the conversion of P-O-type groups into P-C-type species is of paramount importance for improving the catalytic activity in HER of P-doped carbon materials. P-C-type groups appear to be the key factor in the electrocatalytic activity, reaching an onset potential of – 0.27 V. This study sheds light on the origin of the catalytic activity of P-doped carbons, in which P is expected to modify the homogenous distribution of the electron density of undoped carbons and increase their catalytic performance.

Abstract

A common approach for the photoelectrochemical (PEC) splitting of water relies on the application of WO3 porous electrodes sensitized with BiVO4 acting as a visible photoanode semiconductor. In this work, we propose a new architecture of photoelectrodes consisting of supported multishell nanotubes (NTs) fabricated by a soft-template approach. These NTs are formed by a concentric layered structure of indium tin oxide (ITO), WO3, and BiVO4, together with a final thin layer of cobalt phosphate (CoPi) co-catalyst. The photoelectrode manufacturing procedure is easily implementable at a large scale and successively combines the thermal evaporation of single crystalline organic nanowires (ONWs), the magnetron sputtering deposition of ITO and WO3, and the solution dripping and electrochemical deposition of, respectively, BiVO4 and CoPi, plus the annealing in air under mild conditions. The obtained NT electrodes depict a large electrochemically active surface and outperform the efficiency of equivalent planar-layered electrodes by more than one order of magnitude. A thorough electrochemical analysis of the electrodes illuminated with blue and solar lights demonstrates that the characteristics of the WO3/BiVO4 Schottky barrier heterojunction control the NT electrode efficiency, which depended on the BiVO4 outer layer thickness and the incorporation of the CoPi electrocatalyst. These results support the high potential of the proposed soft-template methodology for the large-area fabrication of highly efficient multishell ITO/WO3/BiVO4/CoPi NT electrodes for the PEC splitting of water.

3 Junio 2025· ICMS-sci-talks

To be determined

Dra. Victoria Esteso Carrizo

Semiconductor Materials for Sustainability

Abstract

1 Julio 2025· ICMS-sci-talks

To be determined

Dra. Rosa Pereñíguez Rodríguez

Materials and Processes for Energy and Environment

Abstract
Abstract

Early results on the plasma deposition of dielectric thin films on acoustic wave (AW) activated substrates revealed a densification pattern arisen from the focusing of plasma ions and their impact on specific areas of the piezoelectric substrate. Herein, we extend this methodology to tailor the plasma deposition of metals onto AW-activated LiNbO3 piezoelectric substrates. Our investigation reveals the tracking of the initial stages of nanoparticle (NP) formation and growth during the submonolayer deposition of silver. We elucidate the specific role of AW activation in reducing particle size, enhancing particle circularity, and retarding NP agglomeration and account for the physical phenomena making these processes differ from those occurring on non-activated substrates. We provide a comparative analysis of the results obtained under two representative plasma conditions: diode DC sputtering and magnetron sputtering. In the latter case, the AW activation gives rise to a 2D pattern of domains with different amounts of silver and a distinct size and circularity for the silver NPs. This difference was attributed to the specific characteristics of the plasma sheath formed onto the substrate in each case. The possibilities of tuning the plasmon resonance absorption of silver NPs by AW activation of the sputtering deposition process are discussed.

4 Diciembre 2025· ICMS-sci-talks

To be determined

Dra. Esperanza Pavón González

Materials for the Energy and Environment

Abstract

ICMS-sci-Talks
Seminario cicCartuja 2

ICMS Invited Lectures
Salón de Grados cicCartuja 2

Americo Vespucio 49
Isla de la Cartuja
Sevilla
, 41092 España
Teléfono: 954489500